EE55

Fifth Semester B.E. Degree Examination, December 2010 **Digital Signal Processing**

Time: 3 hrs.

2

Max. Marks:100

Note: Answer any FIVE full questions.

- State and prove the following properties of DFT:
 - i) Frequency shift
- ii) Convolution in time domain
- iii) Linearity.

(12 Marks)

b. Evaluate the circular convolution of the two sequences

$$x_1(n) = \{1, 2, 3, 1\}$$

 $x_2(n) = \{4, 3, 2, 2\}$

(08 Marks)

Compute 6-point DFT of $x(n) = \cos \frac{2\pi}{6}$.n

Let x(n) be N-point real sequence with N-point DFT, X(k) (N even). In addition, x(n) satisfies the following symmetry property:

$$x(n+\frac{N}{2})=-x(n), n=0, 1, 2, \frac{N}{2}-1$$

Show that X(k) = 0 for k even.

(10 Marks)

Compute 8-point DFT using DIT-FFT algorithm 3 a.

$$x(n) = \cos\frac{\pi}{2}.n$$

Draw the computational flow diagram and indicate all intermediate values.

Explain the DSP processor TMS320 architecture.

(08 Marks)

- Consider 8-point DIT-FFT flow diagram (graph):
 - What is the gain of the signal path that goes from x(7) to X(2). i)
 - Write an expression for X(3) using the operation indicated by signal flow graph. ii)

(10 Marks)

Explain the decimation-in-frequency algorithm for 8-point FFT computation.

(10 Marks)

Transform the single pole lowpass Butterworth filter with system function $H(s) = \frac{\Omega p}{s}$ 5

into a highpass filter of cutoff frequency Ωc and a bandpass filter with band edge (08 Marks) frequencies Ωc_1 and Ωc_2 .

- b. Derive an expression for frequency response (magnitude and phase response) of symmetric (12 Marks) FIR filter for odd and even length.
- a. Design a digital symmetric lowpass linear phase FIR filter having desired frequency 6 response

 $H_d(w) = e^{-j2w}$ $o \le |w| \le \pi/2$ Otherwise

b. Employ hamming window of length 5.

(14 Marks)

Compare FIR and IIR filters.

(06 Marks)

Design a digital lowpass filter to meet the following specifications:

 $\leq 1 \text{ dB}$ Passband ripple : 4 kHz Passband edge Stopband attenuation: ≥ 20 dB : 6 kHz Stopband edge

: 24 kHz Sampling rate

The filter is to be designed using bilinear transformation on analog Butterworth system functions.

Obtain Direct-form-I, Direct-form-II, cascade and parallel structures for the system function 8

$$H(z) = \frac{2(1-z^{-1})(1+\sqrt{2}z^{-1}+z^{-2})}{(1+0.5z^{-1})(1-0.9z^{-1}+0.81z^{-2})}$$
(15 Marks)

b. Realize the system function $H(z) = 1 + \frac{3}{2}z^{-1} + \frac{4}{5}z^{-2} + \frac{5}{9}z^{-3} + \frac{1}{9}z^{-4}$ using direct form II. (05 Marks)